

Welcome to django-stored-messages’s documentation!

Django contrib.messages on steroids!

The app integrates smoothly with Django’s messages framework [http://docs.djangoproject.com/en/dev/ref/contrib/messages/]
(django.contrib.messages), but users can decide which messages have to be stored on the database
backend and kept available over sessions.

Features

	Seamless integration with django.contrib.messages

	All the features are in a mixin you can attach to your existing storage

	Stored messages are archived in the database or in a Redis instance

	Users can configure which message levels have to be persisted

	REST api to retrieve and mark messages as read (needs djangorestframework being installed)

	Signalling api to perform actions in response to messages activity

Compatibility table

	Python 2.7, 3.4, 3.5

	Django 1.8, 1.9

	Django Rest Framework >= 3.3 (only if you want to use REST endpoints)

Do you use an earlier version of Django or Django Rest Framework? An old version of stored_messages [https://github.com/evonove/django-stored-messages/tree/1.3.1] is available even
if it’s not supported anymore. Anyway, plan a migration to a newer version.

Contents

	Installation

	Usage
	Using django.contrib.messages api

	Using django-stored-messages api

	Storage Backends
	Default backend: Django ORM

	Redis backend

	Implementing your own backend

	Advanced Usage
	Interact with stored messages through the REST api

	Writing a custom storage

	Signals

	Migrations
	Migrate from 1.3.x to 1.4.0

	Migrate from 1.2.0 (or earlier) to 1.4.0

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Contributors

	History
	1.0.1 (2014-04-17)

	1.0.0 (2014-04-01)

	0.2.1 (2013-12-23)

	0.2.0 (2013-10-22)

	0.1.2 (2013-10-13)

	0.1.1 (2013-10-10)

	0.1.0 (2013-10-08)

Installation

At the command line:

$ easy_install django-stored-messages

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv django-stored-messages
$ pip install django-stored-messages

Add stored_messages to the list of installed apps. You also have to enable
django.contrib.messages framework for using stored messages:

INSTALLED_APPS = (
 # ...
 'django.contrib.messages',
 'stored_messages',
)

MIDDLEWARE_CLASSES = (
 # ...
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
)

TEMPLATE_CONTEXT_PROCESSORS = (
 # ...
 'django.contrib.messages.context_processors.messages'
)

Specify which is the storage class for messages, django-stored-messages provides a convenient
default which adds persistent messages to the storage.fallback.FallbackStorage class from Django:

MESSAGE_STORAGE = 'stored_messages.storage.PersistentStorage'

As last step, don’t forget to run Django migrations:

$ python manage.py migrate

Usage

Using django.contrib.messages api

Which messages are stored?

django-stored-messages integrates smoothly with django.contrib.messages so you can keep on adding
flash messages together with stored ones. But how does django-stored-messages know which messages
have to be persisted and which not? This is completely up to the user, who can configure the
desired behaviour through the STORE_LEVELS settings. This setting is a list containing the
message levels (both provided by Django or custom) which have to be persisted. For example:

'STORE_LEVELS': (
 INFO,
 ERROR,
),

tells django-stored-messages to persist messages of level INFO and ERROR, both provided by
Django. django-stored-messages provides a set of message levels for convenience that can be used
to store message without setting anything and letting Django levels to behave normally:

	STORED_DEBUG,

	STORED_INFO,

	STORED_SUCCESS,

	STORED_WARNING,

	STORED_ERROR,

How do I retrieve stored messages?

Premise: stored messages have a status which can be read or unread. Using the Django api for
displaying messages, it will show unread messages together with Django “regular” messages.
For example, in a template:

{% if messages %}
<ul class="messages">
 {% for message in messages %}
 <li{% if message.tags %} class="{{ message.tags }}"{% endif %}>{{ message }}
 {% endfor %}

{% endif %}

Please notice that displaying stored messages, just like regular messages, will expire them: this
means regular messages are removed from their storages (cookies or the session) and stored messages
will be marked as read (they’ll be still in the database, though).
If this is not the desired behaviour, and you want to keep messages unread even after displaying
them, set the used parameter in the storage instance as False:

storage = messages.get_messages(request)
for message in storage:
 do_something_with(message)
storage.used = False

Using django-stored-messages api

There are situations in which one can leverage the fact that messages are stored in the database
and use them beyond the intentions of django.contrib.messages.api. For example one could:

	send a message without having access to a request object

	send a message to multiple users

	manually mark a message read instead of doing this automatically iterating the storage

django-stored-messages provides an additional api containing some utility methods useful in such
cases.

	
stored_messages.api.add_message_for(users, level, message_text, extra_tags='', date=None, url=None, fail_silently=False)

	Send a message to a list of users without passing through django.contrib.messages

	Parameters:	
	users – an iterable containing the recipients of the messages

	level – message level

	message_text – the string containing the message

	extra_tags – like the Django api, a string containing extra tags for the message

	date – a date, different than the default timezone.now

	url – an optional url

	fail_silently – not used at the moment

	
stored_messages.api.broadcast_message(level, message_text, extra_tags='', date=None, url=None, fail_silently=False)

	Send a message to all users aka broadcast.

	Parameters:	
	level – message level

	message_text – the string containing the message

	extra_tags – like the Django api, a string containing extra tags for the message

	date – a date, different than the default timezone.now

	url – an optional url

	fail_silently – not used at the moment

	
stored_messages.api.mark_read(user, message)

	Mark message instance as read for user.
Returns True if the message was unread and thus actually marked as read or False in case
it is already read or it does not exist at all.

	Parameters:	
	user – user instance for the recipient

	message – a Message instance to mark as read

	
stored_messages.api.mark_all_read(user)

	Mark all message instances for a user as read.

	Parameters:	user – user instance for the recipient

Storage Backends

With version 1.0, the concept of Storage Backend was introduced to let developers choose how
messages are persisted. Django Stored Messages provides a pool of backends out of the box and
developers can extend the app providing their own implementation of a Storage Backend.

STORAGE_BACKEND settings parameter contains a string representing the backend class to use.
If not specified, it defaults to the default backend.

Here follows a list of supported backends.

Default backend: Django ORM

'STORAGE_BACKEND': 'stored_messages.backends.DefaultBackend'

This is the default backend, it stores messages on the configured database using plain old Django
models; it doesn’t need any additional configuration.

Redis backend

'STORAGE_BACKEND': 'stored_messages.backends.redis'

Users’ inbox and archives are persisted on a Redis instance. Keys are in the form
user:<userid>:notifications user:<userid>:archive and values are lists. This backend needs the
REDIS_URL settings to be specified, for example:

STORED_MESSAGES={
 'REDIS_URL': 'redis://username:password@localhost:6379/0',
}

Implementing your own backend

Custom backends should derive from stored_messages.backends.base.StoredMessagesBackend class
and implement all defined methods.

Advanced Usage

Interact with stored messages through the REST api

When Django REST framework is available and installed, Stored Messages exposes a RESTful api
which consists of the following endpoints:

	/inbox/ - method: GET: retrieve the list of unread messages for current logged in user.

	/inbox/{lookup}/ - method: GET: get the details for the message having {lookup} pk.

	/inbox/{lookup}/read/ - method: POST: mark the message having {lookup} pk as read.

	/mark_all_read/ - method: POST: mark all messages as read for current logged in user.

Writing a custom storage

All the functionalities for persisitng messages are implemented in the StorageMixin class. Such
mixin can be derived together with one of the default storages provided by django.contrib.messages
so that messages which types are configured to be persisted will be actually saved to the database
and all the others will be passed to the default storage. The mixin could also be implemented
together with a more specialized storage provided by the user and not necessarily one of those
provided by Django.

Signals

A few hooks are available in backends.signals.

For inbox we raise the following signals:

	inbox_stored: a message has been stored, providing user and message as arguments

	inbox_deleted: a message has been deleted, providing user and message_id as arguments

	inbox_purged: the inbox has been purged, providing user as argument

For archive we raise the following signals:

	archive_stored: a message has been stored, providing user and message as arguments

Migrations

django-stored-messages includes Django migrations since version 1.4.0. Because you may use this
package since previous versions, it’s a good idea following the suggestions below to keep your database in sync
with latest changes. Remember to follow these steps only if you’re using an earlier django-stored-messages
version and you’ve already executed your own migrations.

Migrate from 1.3.x to 1.4.0

Version 1.3.x already has models and changes of 1.4.0. For this reason, all migrations should be
faked.

	update django-stored-messages to version 1.4.0 (remember to check the compatibility table)

	from your project root folder, run:

$ python manage.py migrate stored_messages 0002 --fake

Migrate from 1.2.0 (or earlier) to 1.4.0

Version 1.2.0. (or earlier) has all models except the url field introduced in the Message model.
For this reason the initial migration should be faked, while the second should be executed.

	update django-stored-messages to version 1.4.0 (remember to check the compatibility table)

	from your project root folder, run:

$ python manage.py migrate stored_messages 0001 --fake

	as last step, launch the missing migration:

$ python manage.py migrate stored_messages

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/evonove/django-stored-messages/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-stored-messages could always use more documentation, whether as part of the
official django-stored-messages docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/evonove/django-stored-messages/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-stored-messages for local development.

	Fork the django-stored-messages repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-stored-messages.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-stored-messages
$ cd django-stored-messages/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass the tests, including testing
other Python versions with tox. Remember to start a local instance of Redis before running the
testsuite:

$ python runtests.py
$ tox

To get tox, just pip install it into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7 and 3.3. Check
https://travis-ci.org/evonove/django-stored-messages/pull_requests
and make sure that the tests pass for all supported Python versions.

Contributors

	Massimiliano Pippi <masci@evonove.it>

	Federico Frenguelli <synasius@gmail.com>

	Fabrizio Buratta <fabrizio@moldiscovery.com>

	Marco Angelucci <tilde@autistici.org>

	Riccardo Magliocchetti (xrmx)

History

1.0.1 (2014-04-17)

	Major bug fixed on inbox_get() backend api

	Fixed InboxSerializer for redis backend messages

	Enhanced testsuite

	Added MessageDoesNotExist descriptions and return 404

1.0.0 (2014-04-01)

	New backend architecture with Redis support

	Support for broadcast messages

0.2.1 (2013-12-23)

	Added stored_messages_count template tag and tests

0.2.0 (2013-10-22)

	Added stored_messages_archive template tag

	Extended REST api

0.1.2 (2013-10-13)

	Added specific template tags for stored messages

0.1.1 (2013-10-10)

	Fixed setup.py

0.1.0 (2013-10-08)

	First release on PyPI.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stored_messages	

 	
 	
 stored_messages.api	

Index

 A
 | B
 | M
 | S

A

 	
 	add_message_for() (in module stored_messages.api)

B

 	
 	broadcast_message() (in module stored_messages.api)

M

 	
 	mark_all_read() (in module stored_messages.api)

 	
 	mark_read() (in module stored_messages.api)

S

 	
 	stored_messages.api (module)

 _static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to django-stored-messages's documentation!

 		Installation

 		Usage

 		Using django.contrib.messages api

 		Which messages are stored?

 		How do I retrieve stored messages?

 		Using django-stored-messages api

 		Storage Backends

 		Default backend: Django ORM

 		Redis backend

 		Implementing your own backend

 		Advanced Usage

 		Interact with stored messages through the REST api

 		Writing a custom storage

 		Signals

 		Migrations

 		Migrate from 1.3.x to 1.4.0

 		Migrate from 1.2.0 (or earlier) to 1.4.0

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Contributors

 		History

 		1.0.1 (2014-04-17)

 		1.0.0 (2014-04-01)

 		0.2.1 (2013-12-23)

 		0.2.0 (2013-10-22)

 		0.1.2 (2013-10-13)

 		0.1.1 (2013-10-10)

 		0.1.0 (2013-10-08)

_static/comment.png

_static/down.png

_static/up-pressed.png

